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Multiply By To obtain

gram (g) 3.53 X 10-2 ounce, avoirdupois
liter (L) 3.38 X 101 ounce, fluid
microgram (µg) 3.53 X 10-8 ounce, avoirdupois
microliter (µL) 3.38 X 10-5 ounce, fluid
milliliter (mL) 3.38 X 10-2 ounce, fluid
nanometer (nm) 3.94 X 10-8 inch
picogram (pg) 3.53 X 10-14 ounce, avoirdupois

Degree Celsius (ºC) may be converted to degree Fahrenheit (ºF) by using the following equation:

ºF = 9/5 (ºC) + 32

Abbreviated water-quality units used in this report:

g/L gram per liter
mg/L milligram per liter
µg/L microgram per liter
µS/cm microsiemens per centimeter at 25 degrees Celsius

Other abbreviations used in this report:

a-s absorbance-seconds
ASTM American Society for Testing and Materials
F-AAS flame atomic absorption spectrophotometry
FEP fluorinated ethylene propylene
GF-AAS graphite furnace atomic absorption spectrophotometry
HGA heated graphite atomizer
ICP-AES inductively coupled plasma-atomic emission spectrometry
ICP-MS inductively coupled plasma-mass spectrometry
MDL method detection limit
MIBK methyl isobutyl ketone
Mo molybdenum
MO characteristic mass
MRL method reporting limit
NWQL National Water Quality Laboratory
sp gr specific gravity
SRWS Standard Reference Water Samples
TDL theoretical detection limit
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CONVERSION FACTORS, ABBREVIATED WATER-QUALITY UNITS, AND
ADDITIONAL ABBREVIATIONS--Continued

THGA transverse heated graphite atomizer
USGS U.S. Geological Survey
w/v weight per volume
WWR whole water recoverable
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METHODS OF ANALYSIS BY THE U.S. GEOLOGICAL SURVEY NATIONAL
WATER QUALITY LABORATORY— DETERMINATION OF MOLYBDENUM IN

WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION
SPECTROPHOTOMETRY

By Sandra R. Jones and Betty J. McLain

ABSTRACT

Graphite furnace atomic absorption spectrophotometry (GF-AAS) is a sensitive, precise, and
accurate method that can be used to determine molybdenum in water samples. This method has been
developed to replace the chelation extraction method by flame atomic absorption spectrophotometry
(F-AAS), reducing sample preparation time and safety hazards. The reporting range is 1 to 50
micrograms per liter (µg/L), with a method detection limit of 0.9 µg/L and a linear working limit of 50
µg/L.

Although sulfate interferes in the determination of molybdenum, the use of magnesium nitrate in
conjunction with ammonium phosphate as a matrix modifier minimizes this interference. Numerous
water samples containing various concentrations of sulfate were spiked with 25 µg/L molybdenum and
analyzed for a mean spike recovery of 91 percent.

Molybdenum tends to form carbides, resulting in memory-effect (carry-over) interferences.
Carry-over interferences of approximately 2 µg/L may result following a molybdenum concentration of
50 µg/L. These carry-over interferences are eliminated by routine intermittent blank-sample analysis, a
multistep high temperature cleanout program, and the use of pyrolytically coated graphite tubes.

Precision and accuracy studies demonstrate that the GF-AAS method is comparatively accurate
and more precise than the F-AAS method. Eleven standards tested with concentrations from 0.6 to 50
µg/L display a median relative standard deviation of 6.6 percent. Fourteen reference samples were
tested to demonstrate precision and accuracy of the GF-AAS method; three of the reference samples
show an improvement in precision when compared with the F-AAS method. Statistical comparison
studies of dissolved and whole water recoverable analysis results on water samples demonstrated an
insignificant difference between the GF-AAS and F-AAS methods. The p-values indicated the
differences between methods to be statistically different from zero; however, in both cases, the median
differences are less than the method reporting limit of 1.0 µg/L. Precision and accuracy by the graphite
furnace method are further defined when compared with inductively coupled plasma-mass
spectrometry. Using samples with low concentrations (0 - 3.0 µg/L), the paired t-test demonstrates the
differences between methods to be statistically different from zero; however, the median difference is
well below the method reporting limit.

1



INTRODUCTION

Molybdenum (Mo) is an accessory element in many metal ores. Soluble molybdates may appear
in detectable concentrations in surface water, sediment, ground water, and vegetation at considerable
distances from their source. Molybdenum occurs in oxidation states ranging from Mo+3 to Mo+6, but the
most common solid and aqueous phases contain Mo+4 and Mo+6. It is used extensively as an alloy in
steel production, welding rods, an additive to lubricants, and in ceramics. Molybdenum is generally
present in fossil fuels and can be spread through the environment by burning these materials.
Molybdenum is also an essential trace element in animal and plant nutrition, especially for legumes.
Major sources of contamination include waste from molybdenum mines and pretreatment facilities.
Generally, lakes and rivers from areas not extensively affected by contamination have less than 1 µg/L
of molybdenum while streams affected by molybdenum mining might have concentrations as great as
3,800 µg/L (Hem, 1989, p. 140).

The U.S. Geological Survey's National Water Quality Laboratory (NWQL) currently (1997)
uses two methods for the determination of molybdenum in water samples, inductively coupled
plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry
(ICP-MS). The F-AAS method discontinued in November 1994 had a method reporting limit (MRL) of
1 µg/L with an analytical range to 50 µg/L. The ICP-AES method has a MRL of 10 µg/L with an
analytical range to 10,000 µg/L, and the ICP-MS method offers a MRL of 1.0 µg/L and an analytical
range up to 100 µg/L, but this method is limited to samples with specific conductances of 2,000 µS/cm
or less. The GF-AAS method was developed to replace the F-AAS method for the determination of
molybdenum because it offers excellent sensitivity and precision at low concentrations, has a
comparable range, and is relatively interference free.

The F-AAS method required lengthy sample preparation and the use of reactive and hazardous
reagents, such as methyl isobutyl ketone (MIBK) and 8-hydroxyquinoline, two organic materials that
present health, safety, and hazardous waste problems. The chelation extraction procedure required
approximately 8 hours to analyze a set of 50 samples, with the first 4 hours for sample preparation and
the last 4 hours for sample analysis and hazardous waste disposal. The GF-AAS method requires
neither sample preparation nor organic materials; however, the analytical principle is the same as
F-AAS. Ground state atoms are heated and introduced into the optical path of an elemental light
source. The atoms absorb the light of the wavelength at the resonant frequency, and an absorbance
signal is produced that is directly proportional to the concentration of molybdenum in the sample.
Instead of introducing a sample into a flame through nebulization, a small aliquot of sample is
introduced inside the graphite tube where the tube is heated to excite the atoms using a specified
temperature.

Molybdenum determination by GF-AAS requires five basic steps: drying, pyrolysis,
atomization, clean out, and cool down. The sample and a matrix modifier are pipeted inside the tube.
The graphite tube is purged with a continuous flow of argon gas, and, through the use of a controlled
temperature program, is gently heated (no boiling) to dryness. Following the dry step, the temperature
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is raised to a pyrolysis or char temperature, and with the aid of a matrix modifier the interference
effects caused by concomitant matrix components are minimized. After pyrolysis, the tube may be
cooled (instrument specific) to allow for uniform heating followed by rapid (< 1 second) heating to an
atomization temperature. Gas flow stops and the sample is atomized in the path of the molybdenum
light source where absorption is measured on the resulting atomic cloud. Following atomization, the
gas flow resumes, and high-temperature clean-out and cool-down steps provide a clean environment in
preparation for the next sample. An example of a molybdenum furnace program might be as follows:

Step Temperature (ºC) Ramp Hold
—————————————————————————————————————————
Dry    100 1 40
Pyrolysis 1,650 5 20
Cool down 20 1 15
Atomization 2,650 0 8
Clean out* 2,700 1 3
Cool down* 20 1 10
Clean out 2,700 1 4
Cool down 20 1 10
Clean out 2,700 1 3
Cool down 20 1 10

*The molybdenum program may repeat these steps to maximize removal of matrix components.

GF-AAS is widely used and accepted and has proven to be an efficient and effective tool for the
determination of many trace elements including molybdenum. The low detection limit, small sample
size, analytical range, and minimal sample preparation significantly expand the use compared with
other analytical methods.

This report describes the method for determining trace concentrations of molybdenum
developed by the U.S. Geological Survey (USGS) for use in the Survey's NWQL. This method, which
was implemented in November 1994, supplements other methods of the USGS for determination of
molybdenum in water that are described by Fishman and Friedman (1989) and by Fishman (1993). A
detailed description of all aspects of this method follows from application and results to quality
assurance.
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ANALYTICAL METHOD
Inorganic Constituents and Parameter Codes

Molybdenum, dissolved, I-1492-96 (µg/L as Mo): 01060C
Molybdenum, whole water recoverable, I-3492-96 (µg/L as Mo): 01062B

1. Application

1.1 This method is used to analyze filtered and nonfiltered water samples for dissolved and
whole water recoverable (WWR) analysis. Using a 20-µL sample and Zeeman background correction,
the method is applicable in the range from 1 to 50 µg/L. Sample solutions that contain molybdenum
concentrations exceeding the upper limit of the analytical range must be diluted and reanalyzed or
analyzed by an alternate method.

1.2 Furnace temperature programs, volumes, matrix modifiers, and other instrumental
settings may be modified provided that characteristic mass (±20 percent) is maintained, and the method
detection limit (MDL) is met or improved. Characteristic mass (MO) best describes instrumental and
operational performance; it is defined as the mass of an analyte, in picograms, required to produce a
signal of 0.0044 absorbance-seconds (a-s), so that instrument performance and optimization can be
evaluated (Beaty, 1988, p. 5-1).

2. Summary of method

Molybdenum determination by GF-AAS requires placing a small volume of sample in a graphite
tube, which is held between two graphite rings with quartz windows at each end, producing a
somewhat closed environment to enhance the absorbance signal. The tube is pyrolytically coated with
high-density carbon to reduce the formation of nonvolatile carbides and prevent surface adsorption of
the sample onto the wall of the graphite tube, resulting in longer tube life (Ghe and others, 1983, p.
711). The sample is evaporated to dryness, pyrolized, and atomized using specified temperatures and
high-temperature ramping. The absorbance second signal is produced and compared to standards.
Background noise is corrected using Zeeman-effect background correction, that is, a magnetic field is
turned on and off at approximately 60 hertz (cycles per second) during atomization, causing the sample
signal to split into polarized and nonpolarized components that correct for background interference.

3. Interferences

3.1 "Sulfate interferes with the GF-AAS determination of molybdenum in aqueous solutions
with concentrations of only 0.5 percent weight per volume (w/v) sodium sulfate (Na2SO4), causing
complete elimination of the molybdenum absorbance peak in solutions free of other salts" (Emerick,
1987, p. 69). To reduce the sulfate interference, a matrix modifier is used to facilitate the determination
of molybdenum in the presence of solutions containing sulfate. The use of magnesium nitrate in 
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conjunction with ammonium phosphate as a matrix modifier reduces the sulfate interference
considerably. Nine water samples containing elevated sulfate concentrations with specific
conductances of 3,000 to 6,000 µS/cm and sulfate concentrations of 895 to 3,245 mg/L were analyzed
and spiked with 25 µg/L of molybdenum. Without modifier, the mean spike recovery equaled 37
percent, whereas with modifier, the spike recovery rose to 83 percent. Of these samples, 78 percent fell
within ± 20 of 100 percent; all sample recoveries fell below 60 percent without the use of matrix
modifier, as shown in figure 1. A mean spike recovery of 91 percent, using a matrix modifier on water
samples with various ranges of sulfate concentrations and specific conductances ranging from 2.0 to
7,800 µS/cm, is shown in figure 2. All samples fell within ± 20 of 100 percent except for two, which
had specific conductances greater than 5,000 µS/cm and sulfate greater than 3,000 mg/L. To rule out
matrix interferences, all samples with specific conductances greater than or equal to 5,000 µS/cm
should be diluted or spiked, or both.

Studies were performed using sodium sulfate to determine at what concentration sulfate might
interfere. Solutions containing 0, 0.1, 0.5, and 1.0 percent sodium sulfate were spiked with 25 µg/L
molybdenum and analyzed with and without matrix modifier. See table 1. As expected, without matrix
modifier, there is nearly complete elimination of molybdenum at a 0.5-percent concentration of sodium
sulfate, whereas with matrix modifier, recovery increased to 70 percent.

Table 1. --Sulfate interferences with and without matrix modifier

[%, percent; mg/L, milligrams per liter]
—————————————————————————————————————————

Sodium sulfate Sulfate Spike recovery Spike recovery
(%) (mg/L)   with modifier (%) without modifier (%)

—————————————————————————————————————————
0        0 94 94
0.1    676 71 16
0.5 3,380 70 5
1.0 6,760 30 0

—————————————————————————————————————————

3.2 Carbide may form in the furnace environment because molybdenum binds with carbon to
form MoC, resulting in some signal loss. "During the drying step, MoO3 is formed; it melts at 1,340°C
and is further converted by carbon to Mo2C with pyrolysis temperatures up to 2,150°C. Above
2,250°C, the Mo2C is converted to MoC and Mo. The absorbance signal is larger if ashing [pyrolysis]
does not exceed 2,100°C. This minimizes the formation of MoC, some of which remains after the
atomization step" (Slavin, 1984, p. 123), causing memory effects. The use of pyrolytically coated tubes
helps to reduce the formation of carbides. The high temperature (approximately 2,700°C) for cleanout
is necessary to remove the MoC found on the wall of the graphite tube, but it reduces tube life
considerably. To decrease memory effects and increase tube life, multiple, short, high-temperature
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Figure 1.--Spike recoveries of molybdenum with and without matrix modifier.
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Figure 2.--Spike recoveries of molybdenum using matrix modifier on various sample matrices.
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clean-out steps are suggested rather than one long clean-out step. Studies were performed to determine
memory effects for current furnace programs using three high-temperature clean-out steps. Results of
memory effects obtained by the analysis of blank samples following various concentrations of
molybdenum are listed in table 2 and shown in figures 3 through 5. Memory effects are evident at the
25- and 50-µg/L concentrations. Therefore, any analysis immediately following a sample analyzed with
a molybdenum concentration of about 25 µg/L and greater will be affected by carryover and must be
reanalyzed. One to two blanks analyzed between each sample is recommended to reduce the need to
reanalyze samples because of memory effects, and, at the same time, verify baseline return between
each sample analysis.

Table 2.--Memory effects following analysis of samples containing molybdenum concentrations of 50, 25,
and 8 to 13 micrograms per liter

[µg/L; micrograms per liter; n, number of determinations; NA, not analyzed]
—————————————————————————————————————————————————————
Concen-
tration     Blank 1 Blank 2 Blank 3
(µg/L)      (µg/L) (µg/L) (µg/L)

——————————— ———————————— —————————————
Mean  Standard n Mean  Standard        n Mean Standard n

deviation deviation deviation
—————————————————————————————————————————————————————
 50 2.4 0.9 39 1.0 0.5 38  0.5  0.3 21
 25 1.0 0.7 41 NA NA NA NA NA NA
8-13 0.4 0.5 38 NA NA NA NA NA NA
——————————————————————————————————————————————————————

4. Instrumentation

4.1 The atomic absorption spectrophotometer graphite furnace must be equipped with
Zeeman-background correction, digital integrator to quantitate peak areas, programmable temperature
control for high-temperature ramping, an autosampler, and controlled gas flow. The graphite furnace
must be capable of reaching a temperature sufficient to atomize molybdenum. At present (1997), two
types of graphite furnace are acceptable for use - the heated graphite atomizer (HGA) and the
transverse heated graphite atomizer (THGA). These two types of furnace designs were compared by
analyzing samples at various concentrations. Since the sample data were neither symmetric nor
normally distributed, a sign test (Ott, 1993, p. 297-301) was used to measure if results from the THGA
were significantly different from the HGA. The sign test on the median of the differences for 104
samples analyzed by each method yielded a p-value equal to 0.69, indicating that no significant
difference exists between the instruments (see fig. 6).

4.2 Refer to Beaty (1988) and Beaty and Kerber (1993) for instrumental performance.
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Figure 3.--Results from three consecutive blank analyses following analysis of a sample 
  containing 50 micrograms per liter (µg/L) of molybdenum.
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Figure 4.--Results from blank analysis following analysis of a sample containing 
25 micrograms per liter (µg/L) of molybdenum.
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Figure 5.--Results from blank analysis following analysis of a sample 
containing 8 to 13 micrograms per liter (µg/L) of molybdenum.
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Figure 6.--Analytical results for molybdenum by the heated graphite atomizer
 (HGA) relative to the transverse heated graphite atomizer (THGA).
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5. Apparatus

5.1 Graphite furnace atomic absorption spectrophotometer.  See section 4, Instrumentation.
5.2 Graphite tubes.  Pyrolytically coated graphite tubes without platform for HGA use and

THGA designed tubes (with platform) for THGA use.
5.3 Labware. Many trace metals with low concentrations adsorb rapidly to glassware. To

preclude this problem, use fluorinated ethylene propylene (FEP) or Teflon labware.
5.4 Argon. Standard, welder's grade, commercially available.
5.5 Molybdenum hollow cathode lamp. Designed for a wavelength setting of 313.3 nm.

6. Reagents

6.1 Matrix modifier solution, 13.8 g/L ultrapure ammonium phosphate (NH4H2PO4) and 2.0
g/L ultrapure magnesium nitrate [Mg(NO3)2•6H2O] added to approximately 950 mL water; mix and
dilute to 1,000 mL.

6.2 Nitric acid, concentrated, ultrapure (sp gr 1.41): J.T. Baker "Ultrex" brand HNO3 has
been found to be adequately pure; however, check each lot for contamination.

6.3 Water: All references to water shall be understood to mean Type I reagent water
(American Society for Testing and Materials, 1995, p. 122-124).

6.4 Nitric acid, 10 percent: In a 1-L volumetric flask containing approximately 500 mL of
water, add 100 mL of concentrated HNO3 (sp gr 1.41), then fill to volume with water.

6.5 Water, acidified: Add 4.0 mL ultrapure concentrated HNO3 (sp gr 1.41) to each liter of
water for a final concentration of 0.4 percent.

7. Standards

7.1 Molybdenum standard solution I, 1.00 mL = 1,000 µg Mo: Use a commercially prepared
and certified molybdenum calibration standard, 1,000 mg/L, 0.100 percent w/v.

7.2 Molybdenum standard solution II, 1.00 mL = 100.0 µg Mo: Dilute 10.0 mL molybdenum
standard solution I to 100 mL (NOTE 1).

NOTE 1. Use acidified water to make all dilutions. Store all standards in sealed Teflon or FEP
containers. Standards stored for 6 months yielded concentrations equal to freshly prepared solutions.

7.3 Molybdenum standard solution III, 1.00 mL = 1.00 µg Mo: Dilute 10.0 mL of
molybdenum standard solution II to 1,000 mL.

7.4 Molybdenum working standard solution I, 1.00 mL = 0.010 µg Mo: Dilute 10.0 mL of
molybdenum standard solution III to 1,000 mL.
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7.5 Molybdenum working standard solution II, 1.00 mL = 0.025 µg Mo: 
Dilute 25.0 mL of molybdenum standard solution III to 1,000 mL.

7.6 Molybdenum working standard solution III, 1.00 mL = 0.050 µg Mo: 
Dilute 50.0 mL of molybdenum standard solution III to 1,000 mL.

8. Sample preparation

Upon receipt in the laboratory, filtered samples for dissolved analysis do not require sample
preparation. Nonfiltered samples for WWR analysis require in bottle digestion before molybdenum can
be determined (Hoffman and others, 1996).

9. Instrument performance

9.1 Instrument performance (see section 1.2) is best demonstrated by characteristic mass and
method detection measurements. The calculation for determining characteristic mass is shown in
section 12.

9.2 The current (1997) instrument MO is 9.0 pg for the HGA and 12.0 µg for the THGA
Perkin-Elmer TM furnaces; these characteristic mass measurements are subject to change with advanced
technology.

10. Calibration

The calibration curve is constructed from working standards using a linear curve for a
correlation coefficient of 0.999 or better. Generally, the curve is linear up to a peak height absorbance
of 1.8.

11. Procedure and data evaluation

11.1 Analyze samples in a clean analyte-free environment.
11.2 Rinse the sample cups at least twice with sample before filling. Place the cups in sample

tray and cover. Adjust the autosampler so that only the injection tip contacts the sample.
11.3 Analyze blanks prior to sample analysis to condition the (new) graphite tube and to verify

that acidified water and modifier are not contaminated. If contaminated (indicated by a peak
formation), repour the blank or modifier, or both, to eliminate the problem. If the acidified water or the
modifier, or both, are contaminated at their sources, remake the solutions using a new bottle or lot of
acid or matrix modifier chemical if necessary. If contamination persists, troubleshoot by changing the
graphite tube or cleaning the contact rings, or both.

11.4 In sequence, inject matrix modifier (see note 2) with each aliquot of blank and a
minimum of three standards to construct the calibration curve from the absorbance-second
measurements.

11.5 Similarly, analyze samples by injecting matrix modifier (see note 2) with each sample.
11.6 Analyze a quality-control sample immediately following calibration and after every tenth

sample (minimum). Analyze a blank with each set of samples.

14



NOTE 2: Currently (1997), 2 µL of matrix modifier is used for each 20-µL sample. 

12. Calculations

12.1 Characteristic Mass (MO)

Sample volume (µL) x analyte concentration (µg/L) x 0.0044 absorbance − seconds
MO (pg) = ———————————————————————————— = Calculated MO.

Observed peak area, absorbance − seconds

Acceptable ranges include an interval of 20 percent, calculated as follows:

               Calculated MO − Instrument MO
Percent difference =  —————————————————  x  (100) = percent.

               Instrument MO

12.2 Spikes

     (Sample + Spike) − (Sample)
—————————————  x  (100) = percent recovery
   (Theoretical spike concentration) 

13. Reporting of results

Report dissolved (01060C) and WWR (01062B) molybdenum concentrations as follows: Less
than 1.0 µg/L, as less than 1 µg/L; 1.0 to 100 µg/L, to the nearest microgram per liter; 100 µg/L and
greater, two significant figures.

14. Precision and accuracy

Precision and accuracy are determined by comparing quality-control samples and water samples
between methods. Numerous studies were conducted to demonstrate GF-AAS performance. See the
following discussion for results.
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     DISCUSSION OF RESULTS

      Detection Limit Data

The MDL is defined as the minimum concentration of a substance that can be measured and
reported with 99-percent confidence that the analyte concentration is greater than zero (Environmental
Protection Agency, 1993, p. 569-570). The theoretical detection limit (TDL) was determined to be 0.9
µg/L for molybdenum; it was based on three times the standard deviation of multiple blank
determinations. The MDL is determined using a standard with a concentration between one and five
times the TDL. A 1.0-µg/L molybdenum standard was used to determine the MDL of 0.9 µg/L for
molybdenum. Data for determining the MDL are listed in table 3.

Table 3.--Graphite furnace precision for determining detection limits

[µg/L, micrograms per liter; TDL, theoretical detection limit;
MDL, method detection limit; NA, not analyzed]

—————————————————————————————————————————
Theoretical Mean Standard Degrees of

concentration concentration deviation TDL t value freedom MDL
(µg/L) (µg/L) (µg/L) (µg/L) (n - 1) (µg/L)

————————————————————————————————————————————————————————————
 0 0.09 0.31 0.9 NA 9 NA
 1.0 1.06 0.31 n/a 2.821 9 0.9

————————————————————————————————————————————————————————————

Precision and Accuracy Data

Various studies using a variety of filtered and nonfiltered quality-control and water samples for
dissolved and WWR analysis were performed to measure the precision and accuracy of the graphite
furnace method for determining molybdenum.

Samples were analyzed over a period of 35 days to demonstrate acceptable precision (table 4).
The mean relative standard deviation ranged from about 58 percent at 0.6 µg/L to 5 percent at 33 µg/L;
the median relative standard deviation was 6.6 percent for molybdenum concentrations ranging from
0.6 to 50.1 µg/L.

The accuracy of molybdenum determinations by GF-AAS was verified by analyzing USGS
Standard Reference Water Samples (SRWS) and commercially prepared and certified standards
(SPEXTM). All results were well within the established norms for the means. Precision and accuracy
results are listed in table 5.
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Table 4.--Precision of graphite furnace for determining molybdenum in
a variety of samples

[µg/L, micrograms per liter]
—————————————————————————————————

Standard Relative standard
 Mean deviation Number of deviation
(µg/L) (µg/L) determinations (percent)

———————————————————————————————————————
0.6 0.35 10   58
1.2   .20 10 16.6
2.8   .18 10 6.4
3.7   .43 10 11.6
5.8   .47 10 8.1

13.3   .79 10 5.9
20.3 1.34 10 6.6
32.9 1.66 9 5.0
36.6 2.40 10 6.6
40.8 2.50 10 6.1
50.1 4.75 38 9.5

———————————————————————————————————————

Table 5.--Precision and accuracy results for quality-control samples relative to 
established means and deviations

[NWQL, National Water Quality Laboratory; µg/L, micrograms per liter; n, number
of determinations; SPEX, commercially prepared and certified standards; SRWS,
U.S. Geological Survey Standard Reference Water Samples; --, not established]

————————————————————————————————————————————
NWQL graphite furnace concentration  Theoretical concentration

—————————————————  ————————————
Standard Standard

Reference   Mean deviation Mean deviation)
number   (µg/L) (µg/L)  n (µg/L) (µg/L)
—————————————————————————————————————————————————
SPEX-20 20.8 2.4   8 20.0 --
SPEX-25 26.0 3.4   9 25.0 --
SRWS 93 21.5 1.7 38 19.4 4.1
SRWS 101 50.7 4.8 38 50.0 5.5
SRWS 103 37.2 4.0 28 36.5 4.9
SRWS 105 22.6 2.8 27 22.5 4.3
SRWS 107 16.7 2.1 27 15.0 3.9
SRWS 111 12.4 2.9 38 14.0 3.9
SRWS 113 31.1 4.1 28 34.0 4.8
SRWS 115 47.0 4.8 21 46.0 5.4
SRWS 117 12.5 .6 10 11.8 2.0
SRWS 119 11.2 .7 28 11.9 2.5
SRWS 123 8.9 .5 10 9.2 2.4
SRWS 125 19.3 .8 28 20.1 3.0
—————————————————————————————————————————————————
1Standard deviation established from interlaboratory study by the Branch of Technical Development and Quality Systems.
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In addition, the precision and accuracy of GF-AAS and F-AAS methods are compared using
SRWS 119, 123, and 125 in figure 7. The results of the GF-AAS and the F-AAS analyses are shown as
well as the theoretical most probable values and standard deviations for the SRWS. The accuracy of
GF-AAS and F-AAS methods is comparable; however, GF-AAS shows slightly better precision than
F-AAS.

A comparison of methods using water samples further demonstrates accuracy between the
GF-AAS and F-AAS methods. A total of 179 water samples was analyzed for molybdenum by each
method (see figs. 8 and 9). A sign test was used to determine whether the median of differences
between the two methods differed significantly from zero for samples of both types of water.

The sign test for 108 filtered water samples analyzed by both techniques yielded a p-value equal
to 0.0003, indicating that at a high level of probability, the median of differences is not equal to zero.
However, the analytical significance of the median difference of -0.1 µg/L, and an average of -0.3 ± 1.0
µg/L, is negligible, since it is well below the method reporting limit. In fact, 50 percent of the
differences fell between -0.7 and 0 µg/L. Therefore, in terms of analytical accuracy from the dissolved
analysis results of over 100 filtered water samples, GF-AAS and F-AAS are analytically equivalent.

The sign test on the differences between the same methods for 71 nonfiltered water samples by
WWR analysis yielded a p-value equal to 0.0000, demonstrating that the median of the differences for
GF-AAS and F-AAS WWR analysis results is significantly different from zero at the 95th percent
confidence level. However, as with the dissolved results, the median difference of 0 µg/L for WWR
analysis is not analytically significant, since the mean was -0.9 ± 1.5 µg/L, and 50 percent of the
differences fell between -1.3 and 0 µg/L.

In contrast to the dissolved analysis, the precision of the WWR molybdenum in nonfiltered
samples was slightly more variable, as shown in figure 9. Because of the larger variation demonstrated
with WWR analysis sample comparison, some Standard Reference Water Samples were analyzed by
WWR analysis and charted against their known means and deviations. The results listed in table 6
confirm the accuracy of the GF-AAS method for WWR matrices.

Table 6.-- Precision and accuracy results for whole water recoverable Standard Reference Water
Samples relative to their theoretical means and deviations

[GF-AAS, graphite furnace atomic absorption spectrophotometry; n, number of
determinations; WWR, whole water recoverable; SRWS, Standard Reference Water

Sample. All measurements in micrograms per liter]
——————————————————————————————————

GF-AAS Theoretical
————————   ————————

Reference Standard Standard
number Mean deviation       n Mean deviation
——————————————————————————————————
WWR SRWS 119 11.6 0.5  8 11.9 2.5
WWR SRWS 121 12.0   .5  9 12.0 2.5
WWR SRWS 123 8.9  .4  10   9.2 2.4
WWR SRWS 125 19.6  .8  10 20.1 3.0
——————————————————————————————————
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Twenty-six filtered water samples were analyzed by the ICP-MS and GF-AAS methods to
further verify accuracy of the GF-AAS method (see fig. 10). Results from both methods were
compared by calculating the differences between method results. Since the differences were found to
be normally distributed, the paired t-test (Ott, 1993, p. 293) was used to determine whether the mean of
the differences between the two methods differed significantly from zero. The t-test on the differences
for 26 samples analyzed by each method yielded a p-value equal to 0.025. Therefore, the mean of the
differences between ICP-MS and GF-AAS is statistically different from zero at the 95th percent
confidence level; however, the mean of the differences was 0.1 ± 0.3 µg/L, a concentration well below
the method reporting limit for both methods.

     QUALITY ASSURANCE

Minimum quality-control requirements include analysis of laboratory reagent blanks and
quality-control samples, which must include SRWS and may include intermediate check standards,
sample duplicates, and sample spikes. All WWR sets include a digested SRWS and reagent blank to
verify sample integrity during the digestion process. Field spikes are encouraged as an additional
check. Refer to Pritt and Raese (1995) for further definition of NWQL's goals and inorganic
requirements.

CONCLUSION

The GF-AAS method is an efficient and effective technique for the determination of
molybdenum at trace-concentration levels. It offers a low detection limit and precise and accurate data
without the use of hazardous organic materials. The small sample size, absence of sample preparation,
and minimal interference problems make it an attractive analytical tool for determining molybdenum in
various types of water samples.
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